21,293 research outputs found

    Interview of John P. Rossi, Ph.D.

    Get PDF
    This interview examines Dr. John Rossi’s life since his formal retirement in 2006. Major topics in the interview include Dr. Rossi’s publication of the La Salle history book, Living the Promise. Rossi details the archival experience, the research, drafts, and publication of the book. He also discusses the book’s reception at the school, as well as the community. Another major topic that was explored was Dr. Rossi’s travels and experience in Great Britain while he was researching his doctoral dissertation in the 1960s. Other topics include his analysis of history and his perspective on how technology has affected the classroom and teaching experience. Dr. Rossi also describes his reaction and the process of being granted the title of professor emeritus in 2006. Finally, his post-retirement life is explored; he continues to remain connected to the university through his teaching, as well as several writing projects that he is involved with

    Interview of John P. Rossi, Ph.D.

    Get PDF
    Dr. John Patrick Rossi was born in Philadelphia in 1936 to Gabriel (Al) and Muriel Rossi. He was raised by two aunts, an uncle, and his grandfather in lower Olney. He attended La Salle College High School, received his B. A. in history from La Salle College in 1958, his M. A. from Notre Dame in 1960, and his Ph.D. in History from the University of Pennsylvania in 1965. His dissertation was on the British Liberal Party from 1874 to 1880. He began teaching at La Salle College in 1962; was associate editor of Four Quarters ; received the Lindback Award; developed popular classes on World War II, baseball history, and George Orwell; and served as History Department chair. He has published many works on the British Liberal Party, baseball history, Orwell, and other topics. After retiring, he received the honorable title Professor Emeritus

    The clinical features of the piriformis syndrome: a systematic review

    Get PDF
    Piriformis syndrome, sciatica caused by compression of the sciatic nerve by the piriformis muscle, has been described for over 70 years; yet, it remains controversial. The literature consists mainly of case series and narrative reviews. The objectives of the study were: first, to make the best use of existing evidence to estimate the frequencies of clinical features in patients reported to have PS; second, to identify future research questions. A systematic review was conducted of any study type that reported extractable data relevant to diagnosis. The search included all studies up to 1 March 2008 in four databases: AMED, CINAHL, Embase and Medline. Screening, data extraction and analysis were all performed independently by two reviewers. A total of 55 studies were included: 51 individual and 3 aggregated data studies, and 1 combined study. The most common features found were: buttock pain, external tenderness over the greater sciatic notch, aggravation of the pain through sitting and augmentation of the pain with manoeuvres that increase piriformis muscle tension. Future research could start with comparing the frequencies of these features in sciatica patients with and without disc herniation or spinal stenosis

    Elastic Form Factors of 3,4^{3,4}He up to Large Q2Q^2

    Full text link
    Elastic electron scattering off 3^3He and 4^4He has recently been studied at forward and backward scattering angles in Hall A at JLab. The results will provide accurate data on the elastic form factors, charge and magnetic for 3^3He and charge only for 4^4He, up to squared momentum transfer Q2Q^2-values of 3.2 GeV2^2.Comment: 3 pages, Proceedings of EFB2

    Peptide exchange on MHC-I by TAPBPR is driven by a negative allostery release cycle.

    Get PDF
    Chaperones TAPBPR and tapasin associate with class I major histocompatibility complexes (MHC-I) to promote optimization (editing) of peptide cargo. Here, we use solution NMR to investigate the mechanism of peptide exchange. We identify TAPBPR-induced conformational changes on conserved MHC-I molecular surfaces, consistent with our independently determined X-ray structure of the complex. Dynamics present in the empty MHC-I are stabilized by TAPBPR and become progressively dampened with increasing peptide occupancy. Incoming peptides are recognized according to the global stability of the final pMHC-I product and anneal in a native-like conformation to be edited by TAPBPR. Our results demonstrate an inverse relationship between MHC-I peptide occupancy and TAPBPR binding affinity, wherein the lifetime and structural features of transiently bound peptides control the regulation of a conformational switch located near the TAPBPR binding site, which triggers TAPBPR release. These results suggest a similar mechanism for the function of tapasin in the peptide-loading complex

    Baryonic Popcorn

    Full text link
    In the large N limit cold dense nuclear matter must be in a lattice phase. This applies also to holographic models of hadron physics. In a class of such models, like the generalized Sakai-Sugimoto model, baryons take the form of instantons of the effective flavor gauge theory that resides on probe flavor branes. In this paper we study the phase structure of baryonic crystals by analyzing discrete periodic configurations of such instantons. We find that instanton configurations exhibit a series of "popcorn" transitions upon increasing the density. Through these transitions normal (3D) lattices expand into the transverse dimension, eventually becoming a higher dimensional (4D) multi-layer lattice at large densities. We consider 3D lattices of zero size instantons as well as 1D periodic chains of finite size instantons, which serve as toy models of the full holographic systems. In particular, for the finite-size case we determine solutions of the corresponding ADHM equations for both a straight chain and for a 2D zigzag configuration where instantons pop up into the holographic dimension. At low density the system takes the form of an "abelian anti-ferromagnetic" straight periodic chain. Above a critical density there is a second order phase transition into a zigzag structure. An even higher density yields a rich phase space characterized by the formation of multi-layer zigzag structures. The finite size of the lattices in the transverse dimension is a signal of an emerging Fermi sea of quarks. We thus propose that the popcorn transitions indicate the onset of the "quarkyonic" phase of the cold dense nuclear matter.Comment: v3, 80 pages, 18 figures, footnotes 5 and 7 added, version to appear in the JHE

    Review: optical fiber sensors for civil engineering applications

    Get PDF
    Optical fiber sensor (OFS) technologies have developed rapidly over the last few decades, and various types of OFS have found practical applications in the field of civil engineering. In this paper, which is resulting from the work of the RILEM technical committee “Optical fiber sensors for civil engineering applications”, different kinds of sensing techniques, including change of light intensity, interferometry, fiber Bragg grating, adsorption measurement and distributed sensing, are briefly reviewed to introduce the basic sensing principles. Then, the applications of OFS in highway structures, building structures, geotechnical structures, pipelines as well as cables monitoring are described, with focus on sensor design, installation technique and sensor performance. It is believed that the State-of-the-Art review is helpful to engineers considering the use of OFS in their projects, and can facilitate the wider application of OFS technologies in construction industry

    The two-point correlation function of three-dimensional O(N) models: critical limit and anisotropy

    Full text link
    In three-dimensional O(N) models, we investigate the low-momentum behavior of the two-point Green's function G(x) in the critical region of the symmetric phase. We consider physical systems whose criticality is characterized by a rotational-invariant fixed point. Several approaches are exploited, such as strong-coupling expansion of lattice non-linear O(N) sigma models, 1/N-expansion, field-theoretical methods within the phi^4 continuum formulation. In non-rotational invariant physical systems with O(N)-invariant interactions, the vanishing of space-anisotropy approaching the rotational-invariant fixed point is described by a critical exponent rho, which is universal and is related to the leading irrelevant operator breaking rotational invariance. At N=\infty one finds rho=2. We show that, for all values of N0N\geq 0, ρ2\rho\simeq 2. Non-Gaussian corrections to the universal low-momentum behavior of G(x) are evaluated, and found to be very small.Comment: 65 pages, revte

    Series Solution and Minimal Surfaces in AdS

    Full text link
    According to the Alday-Maldacena program the strong coupling limit of Super Yang-Mills scattering amplitudes is given by minimal area surfaces in AdS spacetime with a boundary consisting of a momentum space polygon. The string equations in AdS systematically reduce to coupled Toda type equations whose Euclidean classical solutions are then of direct relevance. While in the simplest case of AdS_3 exact solutions were known from earlier studies of the sinh-Gordon equation, there exist at present no similar exact forms for the generalized Toda equations related to AdS_d with d>=4. In this paper we develop a series method for the solution to those equations and evaluate their contribution to the finite piece of the worldsheet area. For the known sinh-Gordon case the method is seen to give results in excellent agreement with the exact answer.Comment: 19 pages, no figures; references added, one note adde
    corecore